

Carbon Capture Cost Trends & Projections Through 2035

A Strategic Analysis of CAPEX/OPEX Evolution and Investment Opportunities

Executive Summary

- Carbon capture costs projected to decline by 5-25% across technologies by 2035, with direct air capture showing the steepest reduction trajectory (24.3%).
- Four technologies already competitive at Paris Agreement carbon pricing (\$50/tCO₂): natural gas processing, coal-to-chemicals, bioethanol, and blue hydrogen/ammonia.
- The period **2025-2030** represents a critical window for investment decisions, with several technologies crossing key cost thresholds enabling widespread commercial deployment.
- Strategic investments in carbon capture technologies today, particularly in near-commercial applications, will position stakeholders advantageously as carbon pricing mechanisms strengthen globally.

Technology Cost Projections (2024-2035)

Mature technologies (Natural Gas Processing, Coal to Chemicals) show modest cost reductions of 5-8%, maintaining their position as lowest-cost options.

Direct air capture shows the steepest cost reduction trajectory (24.3%), though remaining the highest-cost application.

Cost Curve Comparison: 2024 vs 2035

All technologies show cost reductions, with the most significant improvements in **Direct Air Capture** (24.3%) and **Coal Power** (19.9%).

Relative positioning remains consistent, with natural gas processing maintaining cost leadership and direct air capture remaining highest-cost.

Break-Even Analysis & Carbon Pricing

Competitive Today (\$50/tCO₂):

Natural Gas Processing

Coal to Chemicals

Bioethano

Emerging Competitiveness (2025-2030):

Iron & Steel Cemen

Gas Power

Coal Power

Technology Readiness & Deployment

Mature technologies (TRL 8-9): Natural gas processing and coal-to-chemicals applications are fully commercial with established deployment pathways.

Emerging technologies (TRL 6-7): BECCS and cement applications are in early commercial deployment with significant scaling potential.

Investment Decision Framework

Invest Now (Low Cost, High Reduction)

Natural gas processing, coal-to-chemicals, bioethanol - immediate revenue opportunities with proven economics

Strategic Positioning (High Potential)

Iron & steel, cement, gas power - significant cost reduction potential, approaching competitiveness

Wait & Watch (High Cost, High Reduction)

Direct air capture - substantial improvement potential but requires careful timing and risk management

Mature Technology (Steady Returns)

Established applications - focus on operational optimization and market expansion

Policy-Relevant Inflection Points

Critical Decision Windows

- The 2025-2030 period represents a critical window for strategic investment and policy development
- Industrial applications cross key cost thresholds, enabling widespread commercial deployment

Market Development Inflection Points

- **Hub development** reaches critical mass (2026-2028), enabling shared infrastructure economics
- Carbon pricing mechanisms mature (2025-2027), providing investment certainty

Strategic Recommendations

For Investors

- ▶ Prioritize immediate opportunities in natural gas processing, coal-to-chemicals, and bioethanol for near-term revenue generation
- Consider **strategic positioning** in iron & steel, cement, and gas power applications approaching competitiveness
- Maintain selective exposure to direct air capture for longterm value creation potential
- Implement portfolio diversification across technology categories and geographic markets

for Policymakers

- \$ Develop predictable carbon pricing mechanisms with longterm escalation schedules
- Tailor technology-specific support based on competitive positioning and development needs

For Technology Developers

- Prioritize energy integration optimization , particularly for direct air capture applications
- Focus on manufacturing scale-up to achieve cost reductions through mass production
- Invest in next-generation technologies for step-change improvements in cost and performance

Critical Success Factors

The 2025-2030 window is critical for establishing market position. Organizations that invest strategically during this period will be advantageously positioned for the broader commercial deployment phase.

Key Enablers

Success requires coordination between **technology development** , **policy support** , and **market preparation** to

References & Additional Resources

Key References

- Energy Transitions Commission (2022). <u>Carbon Capture, Utilisation & Storage in the Energy Transition</u>
- International Energy Agency (2023). <u>Energy Technology Perspectives</u>
 2023
- McKinsey & Company (2023). Global Energy Perspective 2023: CCUS
 outlook
- IPCC (2022). Climate Change 2022: Mitigation of Climate Change
- World Bank (2024). State and Trends of Carbon Pricing 2024

Case Studies

- Petra Nova CCS Project (Texas, USA)
- 🕍 Boundary Dam 3 CCS Project (Saskatchewan, Canada)
- Shell Quest CCS Project (Alberta, Canada)
- Morwegian Full-Scale CCS Initiative (Norway)

Data Sources

- Global CCS Institute (2023). Global Status of CCS Report
- NETL (2020). Cost and Performance Baseline for Fossil Energy Plants
- **ERIA** (2022). <u>CCUS Cost Estimation Case Studies</u>
- Clean Air Task Force (2024). <u>Carbon Capture Project Database</u>

For More Information

- contact@carboncaptureanalysis.org
- www.carboncaptureanalysis.org
- 🟂 Full report available for download